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Dental enamel is prone to damage by chipping with large hard objects at

forces that depend on chip size and enamel toughness. Experiments on

modern human teeth have suggested that some ante-mortem chips on

fossil hominin enamel were produced by bite forces near physiological

maxima. Here, we show that equivalent chips in sea otter enamel require

even higher forces than human enamel. Increased fracture resistance corre-

lates with more intense enamel prism decussation, often seen also in some

fossil hominins. It is possible therefore that enamel chips in such hominins

may have formed at even greater forces than currently envisaged.
1. Introduction
Effective pre-gastric processing of food is essential to the fitness of nearly all mam-

mals, the front line in this survival struggle being the tooth–food mechanical

interface [1]. Contacts between teeth and food are made mostly with enamel, a

hyper-mineralized tissue with puzzling mechanical behaviour, variously

described as ‘glassy’ [2] or ‘metallic’ [3]. Despite labels from two ends of the

material property spectrum, building blocks of enamel are common to most mam-

mals: elongate crystals of hydroxyapatite, 25–70 nm in cross-section occupying

more than 90% of tissue volume, are clumped into long multi-crystalline

prisms, 3–5 mm wide, embedded in a protein gel. A tiny 1–10 nm gap separates

crystals with approximately 100 nm wide crystal-free spaces at prism borders [4].

Most fractures in human enamel run along these borders, essentially cleaving the

gel [5]. Yet, the prism structural arrangements vary greatly in mammals [6–9],

offering potential insights into enamel mechanical behaviour via the opportunity

to examine different designs. In some mammals, prisms run straight from

enamel–dentine junction to tooth surface (‘radial’ paths), but curved paths with

varying phase angles (‘decussation’) are often seen [5,10], particularly in inner

enamel as in humans, impeding cracks better [11]. Measuring the Hunter–Schreger

band (HSB) width indicates the intensity of decussation (figure 1a) [5,12].

Toughness is the property resisting crack growth [8]. Enamel must be tough

in order to prevent wholesale failure such as crown splitting. This is especially

important to mammals eating hard food objects like seeds, bone or shells. In

response to these dietary niches, dental adaptations such as bunodonty (teeth

with large low rounded cusps) and high levels of decussation have evolved

(figure 1a) [7,8,13]. Is such enamel tougher?
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(b)(a) (c)

Figure 1. (a) Light microscopy (LM) image shows high degree of decussation in sea otter enamel. HSB extend to the tooth surface. Scale bar, 0.2 mm. (b) Enamel
chip; arrow indicates measurement of h (VPSEM in SE mode: accelerating voltage 20 kV; current 300 pA; pressure 75 Pa). Scale bar, 0.5 mm. (c) LM at higher
magnification showing the circular outlines of prisms in cross-section (each approx. 4 mm in diameter). Arrows indicate where cracks have entered prism
edges (variable pressure scanning electron microscopy (VPSEM) in backscattered electron mode: 20 kV; 1 nA; 625 Pa). FW ¼ 32 mm.
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Figure 2. (a) Force – displacement graph to produce a chip. Scale bar 1 mm. (b) Peak force PF against chip size h for sea otter enamel (filled circles), plotted on
logged scales (r2 ¼ 0.91; p , 0.001), compared to humans (open circles), produced under identical conditions [11]. For any given chip size, PF for sea otter enamel
is much higher, with average toughness of 2.8 MPa m20.5 comparing to 1.0 MPa m20.5 for humans. (Online version in colour.)
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Sea otters (Enhydra lutris), the largest living mustelids,

inhabit the North Pacific coast [14,15], eating invertebrates

and fish [14]. They are renowned for predating hard-shelled

marine invertebrates such as abalone, sea urchins, clams,

mussels and crabs [13–15]. Most shells are fractured with

the teeth [13], with frequent contacts between tooth cusps

and heavily mineralized exoskeletons. The postcanine teeth

of a sea otter are bunodont, very different from other Carni-

vora and remarkably similar to hominin teeth [16]. Previous

studies have used sea otter teeth as a model for exploring

hard object feeding by hominins, particularly Paranthropus
boisei [13], making their dental architecture of general interest.

Here, we use a chipping technique increasingly used in

brittle materials to indicate fracture resistance [11,17–19].

For a Vickers indentation near a right-angled edge on a

fine-grained ceramic, the peak force is

PF ¼ bTh1:5, (1:1)

where h is chip size, measured from indentation point to tooth

edge (figure 1b), T is fracture toughness (in MPa m20.5),

sometimes called the ‘critical stress intensity factor’, and b is

a coefficient [17]. We hypothesized that sea otter enamel will

have high toughness to accommodate blunt trauma encoun-

tered during feeding (figure 1c). We discuss our findings

relative to the adaptive capabilities of dental structures and

to assumptions about early hominin bite forces.
2. Material and methods
Canine and first molar teeth were excised from frozen sea otter

jaws and their roots embedded in epoxy resin. Longitudinal
sections were cut to expose HSBs, which were then counted, nor-

malized to the length of the enamel junction (electronic

supplementary material, figure S1) [12]. For chipping, crowns

were cut transversely to obtain a flat surface, then polished to a

1mm finish. Prior to chipping, teeth were kept hydrated in

water, then placed onto a mechanical testing stage. A tungsten car-

bide Vickers macro-indenter was pushed vertically down onto

enamel at a distance h from an enamel edge with increasing

load until, at a peak force PF, a scallop-shaped chip broke away

(figure 2a). The critical chip dimension h, measured to

+0.01 mm, was varied to determine its effect on PF. Enamel

decussation was viewed by light microscopy (LM). Post-test speci-

mens were imaged uncoated by variable pressure scanning

electron microscopy (VPSEM; Zeiss EVO 50). Sea otter data

were compared to that existing for humans [11], testing differences

between slopes and intercepts (figure 2b) using analysis of covari-

ance. When slopes were similar, the interaction term was removed

and a new model run to test difference between intercepts.
3. Results
Twelve experimental chips, varying h between 0.16 and

0.79 mm (upper limit dictated by enamel thickness), required

a peak force PF of between 53 and 605 N to fracture. PF was

proportional to h raised to the power 1.45 (s.e. 0.14; 95% CI

1.13–1.77), according to equation (1.1). Plotting log PF against

log h (figure 2b), then from equation (1.1), assuming b ¼ 9.3

for this geometry [12], the toughness of sea otter enamel is

calculated as 2.8 (s.e. 0.3) MPa m20.5. Comparing to humans

(figure 2b), analysis of covariance showed slopes of the

regressions did not differ significantly (F2,24¼ 0.625, p¼ 0.437),

but intercepts did: otter enamel is 2.5 times tougher than

http://rsbl.royalsocietypublishing.org/
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that of humans (F1,25 ¼ 67.9, p , 0.001). Sea otter enamel had

a mean of 19.4 (s.d. 2.5) HSB mm21 (figure 1a). Enamel chips

passed through these bands (figure 1b). Higher magnification

(figure 1c) indicates cracks may avoid prism cores, but ‘nick’

their borders.
 cietypublishing.org
Biol.Lett.10:20140484
4. Discussion
Sea otter enamel is much tougher than that of humans (figure

2b). Estimates for human enamel range from 1.0 to

2.4 MPa m20.5 [17–20], depending on test method [10,11,17–

22]. Chipping has the lowest estimate. Toughness often

increases with crack length in the human [20], but the impor-

tant structural variable is decussation in the fracture path. An

upper bound toughness of 2.4 MPa m20.5 in humans [10] lies

below the chipping estimate for sea otters. The principal

toughening mechanism is ‘bridging’ where secondary cracks

initiate beyond interfaces [10,20,21]. This only happens in

decussating enamel, particularly near HSB boundaries [21].

Its effectiveness depends on raising the force initiating these

secondary cracks compared with that which initiated the pre-

ceding crack [22]. So the more interfaces in the crack path, the

higher the toughness. A maximum of 14 HSB mm21 in human

enamel lateral to a cusp [12] compares to a mean of 19 in sea

otter enamel (figure 1a): in itself, this explains the latter’s elev-

ated toughness. Additionally, the outermost 20%–30% of

human enamel is radial [10], while in sea otters, HSBs run

almost to the surface. So only large chips in humans involve

decussation, explaining why chipping resistance in modern

human teeth is uniformly low [11,23], while all chips in sea

otters encounter it.

Prism shapes may factor into this. Circular prisms in sea

otters (figure 1c) are not seen in human enamel, but the
functional importance of shape differences is unknown. Decus-

sation seems the major factor. Importantly, some sectional

images of fossil hominin teeth show greater decussation than

in modern humans [24–29]. Estimates of 16 bands mm21 in

East African early Homo sapiens and 19 bands mm21 in

P. boisei [28] fossils are strikingly similar to sea otter data.

The explanation may be dietary—to avoid teeth being chipped

during hard object feeding involving high bite forces [13,16].

Using toughness estimates for modern human enamel [22],

the sizes of some ante-mortem chips in fossil hominin

enamel suggest kilonewton forces [13]. If the toughness of

sea otter enamel were assumed for robust hominins like

P. boisei, then this would predict exceptionally high critical

tooth fracture loads. This indicates a strong reason to quantify

decussation better. Understanding more about extreme adap-

tations and variability in the enamel of extant animals will

aid in deciphering dietary habits of our own lineage and

close relatives [30].
Data accessibility. All data are included in the paper.
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